Radiation Therapy

Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells. X-rays, gamma rays, and charged particles are types of radiation used for cancer treatment. Radiation therapy kills cancer cells by damaging their DNA (the molecules inside cells that carry genetic information and pass it from one generation to the next). Radiation therapy can either damage DNA directly or create charged particles (free radicals) within the cells that can in turn damage the DNA. Cancer cells whose DNA is damaged beyond repair stop dividing or die. When the damaged cells die, they are broken down and eliminated by the body’s natural processes.

About half of all cancer patients receive some type of radiation therapy sometime during the course of their treatment. A patient may receive radiation therapy before, during, or after surgery. Some patients may receive radiation therapy alone, without surgery or other treatments. Some patients may receive radiation therapy and chemotherapy at the same time. The timing of radiation therapy depends on the type of cancer being treated and the goal of treatment. Using sophisticated treatment planning software, your radiation oncology treatment team plans the size and shape of the beam, as well as how it is directed at your body, to effectively treat your tumor while sparing the normal tissue surrounding the cancer cells.

Radiation can come from a machine outside the body (external-beam radiation therapy) or from radioactive material placed in the body near cancer cells (internal radiation therapy, more commonly called brachytherapy). Systemic radiation therapy uses a radioactive substance, given by mouth or into a vein, that travels in the blood to tissues throughout the body.

The type of radiation therapy prescribed by a radiation oncologist depends on many factors, including:

  • The type of cancer.
  • The size of the cancer.
  • The cancer’s location in the body.
  • How close the cancer is to normal tissues that are sensitive to radiation.
  • How far into the body the radiation needs to travel.
  • The patient’s general health and medical history.
  • Whether the patient will have other types of cancer treatment.
  • Other factors, such as the patient’s age and other medical conditions.